

Update on air quality activities in ENEA

Mihaela Mircea on behalf of Atmospheric Pollution Laboratory (INAT)

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)

https://met.sspt.enea.it/people
https://impatti.sostenibilita.enea.it/en
www.enea.it

Projects&Activities

- ☐ PULVIRUS
- ☐ Cooperation Agreement with MITE(Italian Ecological Transition Ministry) (CA-MITE)
- ☐ Cooperation Agreement with MITE:
 Study of Wood Burning Oven Emission
- ☐ ABC
- **□** VISIBILTY
- ☐ Life Pre VEG-GAP
- ☐ TFMM inter-comparison exercises, CAMS and FAIRMODE activities

22th TFMM Meeting – 10-12 May 2021, online

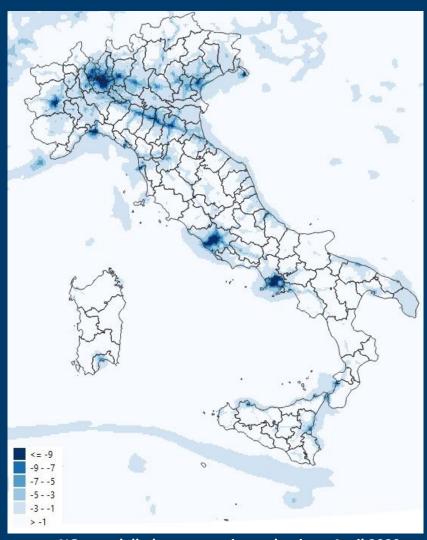
PULVIRUS: air pollution and COVID-19

Partners

ENEA, National Institute of Health (ISS) and the National System for Environmental Protection (SNPA) whose members are the National Institute for Environmental Research (ISPRA) and the Regional Agencies for Environmental Protection)

Purposes

10	investigate at national level:
	the relationship between air pollution and the spread of the pandemi
	the physical-chemical-biological interactions between fine particulate
	matter and viruses
	the effects of the "lock down" on air pollution and greenhouse gases
for	further support to environmental and health policies


Outcomes

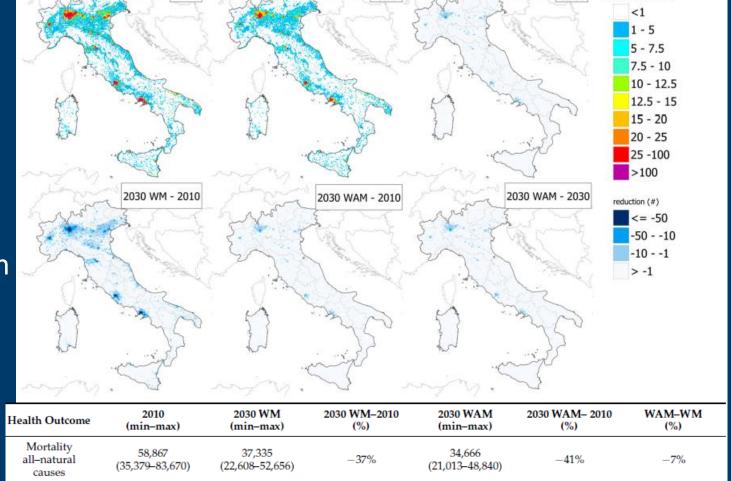
data, models and elaborations, reports and publications will be made available to the public and to the national scientific community through a website

ENEA

PULVIRUS approach: measurements and modelling

- the impact of lockdown on atmospheric composition: measurements and simulations with AMS-MINNI
- ❖ study of the interaction between atmospheric particulate matter and virus: "in silico" analysis, i.e. the reproduction of the interaction between virus and atmospheric particulate by means of computer simulation, and a biological model representative of the characteristics of SARS-CoV-2

NO₂: modelled concentration reduction - April 2020


CA-MITE: Updated 2030 scenarios for National Air Pollution Control Plan (NEC Directive)

2010

PM_{2.5} mortality

PM_{2.5} variation in mortality

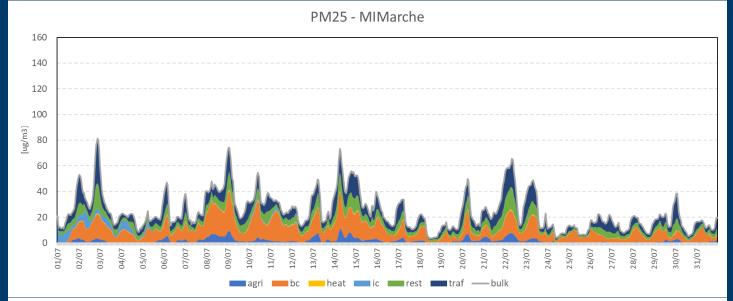
https://impatti.sostenibilita.enea.it/projects/accordo-direttiva-nec

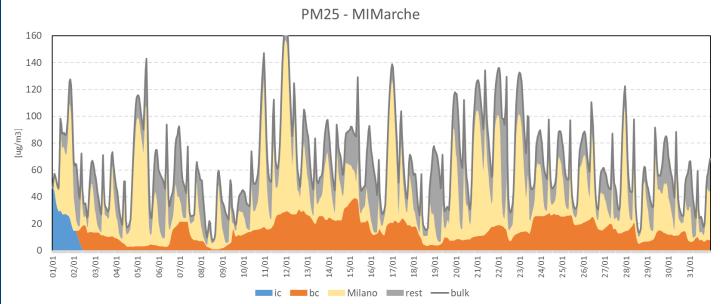

2030

2030

WAM

attributable cases (#)


Piersanti et al., Atmosphere, 2021, 12, 196. doi: 10.3390/atmos12020196



CA-MITE: On-line source apportionment in MINNI

Sectorial SA

Geographic SA

Legenda PM10

 $(\mu g/m^3)$

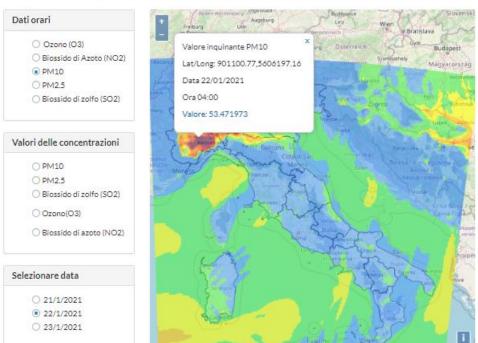
< 5

5-10

10-20

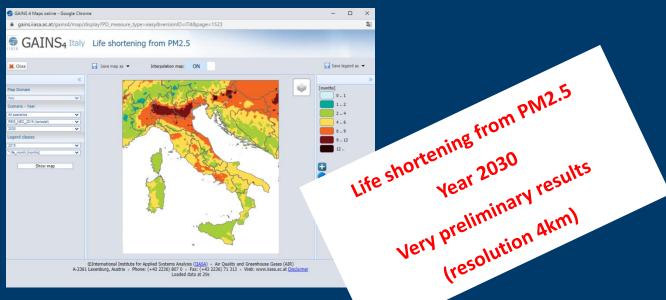
35-40

40-45 45-50


PM10

Inquinante PM10

Dati Previsionali



CA-MITE: Updates on GAINS-Italy

- ☐ Input data: The 20 Italian Regions
- ATM spatial resolution: 4 km
- Meteo: 2015, 2004, 2005 + average
- ☐ ATM equation : linear + second order terms some impact
 - indicators (O₃, PM, NO₂...)
- ☐ Scenario years: 1990-2050 (5-year step)

ENEA-IIASA collaboration

Cooperation Agreement with MITE: Study of Wood Burning Oven Emission

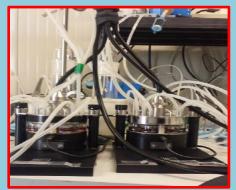
Partners ENEA- MITE

Purpose

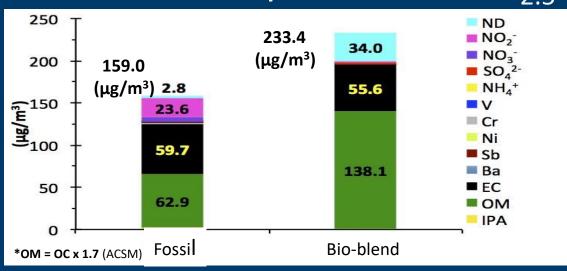
Investigation on the impact of wood burning oven (for cooking pizza) emissions on air quality

Outcomes

- PM₁₀, PM_{2.5}, PAH wood burning oven emission factors
- chemical characterization of wood burning oven aerosol emissions


ABC (Aerotrazione con BioCarburanti) – Airmotive with biofuels: sampling setup

LINEA	1	2	3	4	5
PM/gas	PM ₁	PM _{2.5}	PM _{1.7}	GAS	PM _{2.5}
lpm	3	38.3	4	-	9
Instruments	ACSM	3 pumps	SMPS GRIMM 2xCultex	M/TNMHC CO ₂ , SO ₂ , NO, NO ₂ , NOx	OCEC Sunset



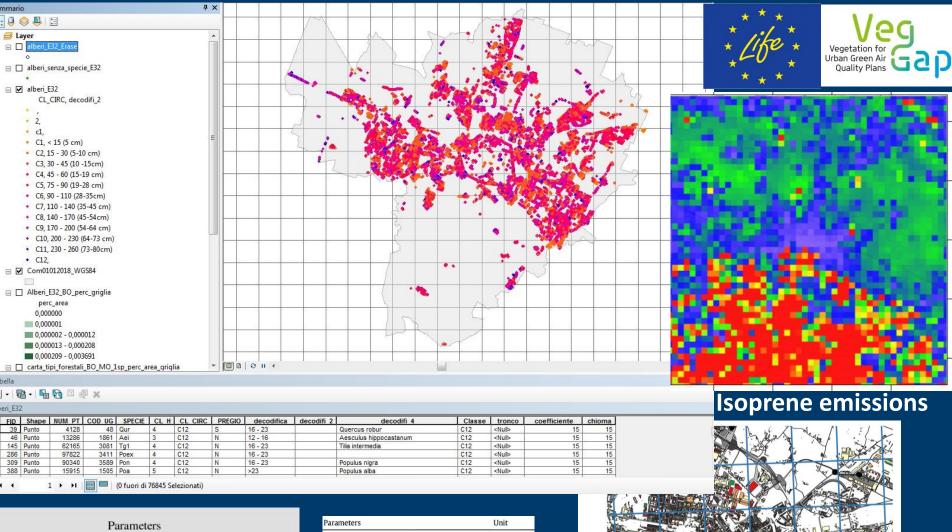
ABC results

Chemical composition of PM_{2.5}

	PM _{2.5} (μg/	err (μg/m³)		
Fossil fuel	159.0		13.8	
Bio-blend fuel *	233.4		26.9	
*ca. 15% bio				
		IPA		
		μg/m³	%	
, i	ossil fule	2.81	1.8	
Bio –bl	end fuels	1.59	0.7	

Emissions factors

Emissions factors for k	g of fuel	Bio-blend fuel	Fossil Fuel	Ratio B/F
PM2.5 (mg)		612.0 (70.4)	455.6 (39.5)	1.3
Organic carbon	o OC (mgC)	219.7 (54.1)	109.9 (21.4)	2.0
Elemental carbon	EC (mgC	(31.8)	169.4 (31.5)	0.9

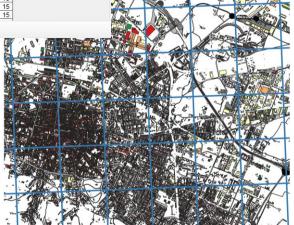

Application of US EPA visibility approach and National Park Service (NPS) methodology in Italy

ENEA - Arma dei Carabinieri: sampling campaign near Circeo National Park

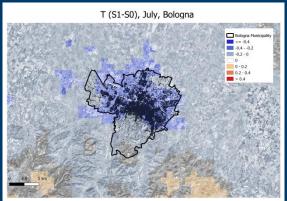
Visibility in natural/wilderness areas is essential for the "recreational" interest of these areas.

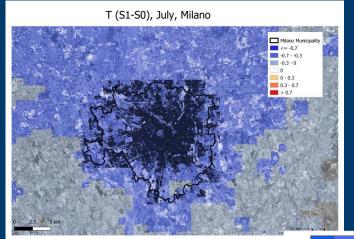
Chemical characterization of aerosol for testing IMPROVE Equation used for estimating aerosol light extinction

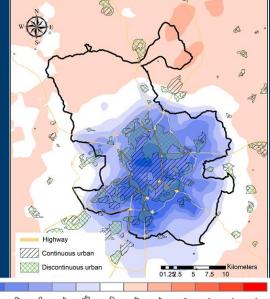
Heat capacity of roof/walls [J m⁻³ K⁻¹]

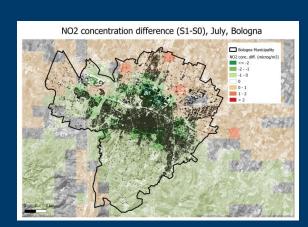

Heat capacity of ground [J m⁻³ K⁻¹]

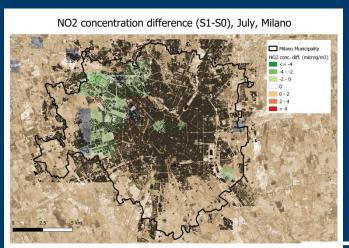
Thermal conductivity of building wall/roof [J m⁻¹ s⁻¹K⁻¹]

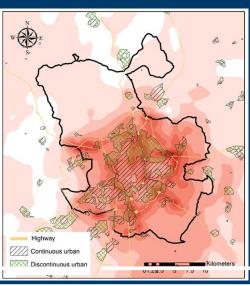

Thermal conductivity of ground [J m⁻¹ s⁻¹K⁻¹]

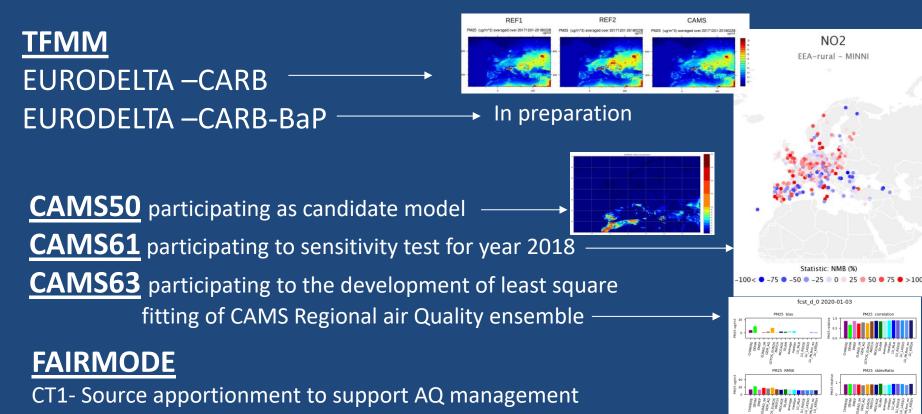

Albedo of walls/roof/ground [-]


Parameters	Unit
Building height	m
Building width	m
Width of the road	m
Urban fraction	Fraction
Roof albedo	Fraction
Wall albedo	Fraction
Pavement albedo	Fraction
Roof roughness length	m
Wall roughness length	m
Pavement roughness length	m









TFMM inter-comparison exercises and FAIRMODE activities

- CT2 Development of an overall QA/QC protocol for AQ assessment
- CT3 Quality control indicators for AQ forecast
- CT4 Micro-local scale air quality modelling
- CT5 Best practices for local and regional AQ management
- CT8 Exposure and exceedance indicators
- CT9 Effectiveness and robustness of air quality projections

mihaela.mircea@enea.it

